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FORMATION OF HETEROGENEOUS REACTION REGIMES 

UNDER THE ACTION OF MULTIPLICATIVE NOISE 

Yu. A. Buevich and S. P. Fedotov UDC 533.72:536.46 

It is shown that transitions from the diffusion regime to the kinetic regime 
are possible when the fluctuations of the heat transfer from the zone of an 
exothermic reaction exceed a certain critical value, and the diffusion regime 
of the reaction can be suppressed when they exceed a second, higher level. 

The occurrence of fluctuations of the properties of nonlinear dynamical and physicochemical 
systems and of the parameters of external fields interacting with those systems can radically in- 
fluence the behavior of the systems. The systems are no longer described by deterministic equations 
in this case, but by stochastic equations of the Langevin type with the inclusion of additive and 
multiplicative noise. The existence of the latter cannot only alter the characteristics of the 
steady-state regimes in the quantitative respect, butalso lead to a qualitative reorganization of 
these regimes, along with their stability domains and the condition underlying their occurrence 
(see, e.g., [i]). 

The action of "white" noise (delta-correlated Gaussian stochastic processes) on the formation 
of the regimes of lumped-parameter physicochemical systems was first investigated [2-4] by analyz- 
ing the steady-state solutions of the Fokker-Planck equations corresponding to the stochastic 
equations for these systems. The influence of"colored" noise, i.e., situations in which the cor- 
relation time of the stochastic processes is commensurate with the time scale of the mean charac, 
teristics of the system, has been investigated [5-7]. Some of the authors [4-7] have reported the 
observation of transitions to bistable behavior. A certain classification of such transitions 
and a survey of research in the indicated direction may be found in [8]. Analogous phenomena in dis- 
tributed systems appear to have been treated for the first time [9] on the basis of an analog of the 
Ginzburg-Landau equation in the theory of second-order phase transitions. 

In the present article we investigate the influence of fluctuations of the heat- and 
mass-transfer coefficients on the process of a heterogeneous exothermic reaction (combus- 
tion) described by the system of nonlinear equations [i0] 

edc/dt = ~ (co -- c) -- k (T) c, 

cpdT /dt = Qk (T) c - -  a (T - -  To), ( 1 ) 

k (T) = z exp (-- E/RT) .  
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A structurally similar system of equations can be used to describe certain other pro- 
cesses of practical importance, e.g., the reaction process in an ideal mixing reactor [I0]. 
The parameter e is usually small, making it possible to neglect the left-hand side of the 
first equation (i), to express c in the equation as a function of T, and to derive the single 
equation 

dr QcofJh (T) (T To). 
C p - -  ---- - -  G -- 

dt p + /, (T) (2) 

However, this equation is usually unsuitable for analysis when a and ~ are random time func- 
tions. Consequently, the procedure for the adiabatic elimination of one of the unkno~ 
functions from Eqs. (I) must be devised by the general method proposed in [ii, 12]. We set 

(t) = ( ~ > + ~' (t), p (t) = < ~ > + p' (t), ( 3 )  

where  <a> and <8> a r e  c o n s t a n t s ,  and a ' ( t )  and $ ' ( t )  a r e  s t o c h a s t i c  p r o c e s s e s  w i t h  z e r o  
means. We assume for definiteness and for simplification tha~ the correlation time of the 
indicated stochastic processes is very small, i.e., that they can be regarded approximately 
as white noise. The following representation is admissible in this case [ii, 12]: 

d~ ' (4) 
~' (T) "]/'~3 d~l __ ] / ~  dw2 
( ~ ) d~ dT ' 

where  w j ( T )  ( j  = 1,  2) a r e  i n d e p e n d e n t  Wiener  s t o c h a s t i c  p r o c e s s e s ,  f o r  which  <wj> = O, <w~> 
= T, <wlw2> = O. The i n t r o d u c t i o n  o f  two such  p r o c e s s e s  in  t h e  form (4)  e n a b l e ~  us  t o  de s -  
c r i b e  t h e  p o s s i b l e  c o r r e l a t i o n  be tween  a ' ( t )  and ~ ' ( t ) ;  i f  t h e  l a t t e r  do n o t  c o r r e l a t e :  i t  
i s  r e q u i r e d  t o  s e t  D2 = D3 = O. Here  r i s  t h e  d i m e n s i o n l e s s  t i m e .  

As in  t h e  s t a n d a r d  method o f  " e x p a n s i o n  o f  t h e  e x p o n e n t i a l "  [ 1 0 ] ,  we i n t r o d u c e  t h e  d i -  
mensionless variables and parameters 

0 T -- To c o - -  c 

o ' T  o c o 

V -- exp - -  , 
;~> 

k(T) = z e x p  ( - - 1 ) e x p  
,, O" 

( ~ '> RTo 
, T - -  t ,  (~-- , 

cp E 

_1 i 8 -- coQz exp { - -  
} 

a(~),To \ ~ ;: 
0 (~>cp 

l+aO <~>8 

(5) 

Equations 
ables (5) with allowance for Eqs. (3) and (4): 

(i) can be written in the standard form for stochastic equations in the vari- 

d~ - vx ( V V ~  d=, + V 2 0 ~  dw~), dx=T[ - - x@~( I - - x ) exp  ---~0 -] 
,_ 1 +aO 

( 6 )  
be set in correspondence with the Fokker-Planck equation: 

O~-O[ _ OxO {[gZ(Da+ D~)xq-Y( - x + ~ ( 1 - x ) e x p  l +Oa"----'~)] }~ -- 

(6 )  

dO= [[6(1--x)  exp l+aO0 0] t iT-- 0 (-1/~-~ dw~ -4- V2DTdwD. .  

R e s p e c t i n g  t h e  p h y s i c a l  s i g n i f i c a n c e  o f  t h e  i n v e s t i g a t e d  p r o b l e m ,  we must  i n t e r p r e t  Eqs.  
in  t h e  s e n s e  o f  S t r a t o n o v i c h  [1 ,  11] .  These  s t o c h a s t i c  d i f f e r e n t i a l  e q u a t i o n s  can t h e n  

o{[ o]} 
O0 ( D ~ q - D ~ - - l ) O q - 6 ( 1 - - x ) e x p - -  f q- 

1 + a O  
0 2 0 2 

q- 7 2 ~ [(Da q- D~) x~fl + --~- [(D~ q- DD OZf] + (7) 

0 2 

+ 2~ -575~ I(VE-DT+ V ~ )  xOf] 
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I 

Fig. i 
Fig, i. Graphical solution of Eqs. 

Fig. 2. Qualitative behavior of the probability density function 
under steady-state conditions at different noise levels. 

r162 

o e; o~ % o, o 

F i g .  2 
(14)  and (15) .  

[when Eqs. (6) are interpreted in the sense of It6, it is required to drop terms containing 
Dj in the components of Eq. (7) that describe "convective" entrainment]. Here f = f(x, x, 9) 
is the probability density function in the plane of the variables x and 8. 

If the relaxation time x x of the reagent concentration is much smaller than such a time 
T 8 for the temperature in the reaction zone (as is customary, e.g., for heterogeneous com- 
bustion processes), it is possible to eliminate the variable x adiabatically. This is ac- 
complished formally by transforming as 7 + ~ to the new density function #(x, 8), which re- 
presents the results of averaging f(T, x, 0) over time intervals A~ that satisfy the ine- 
qualities ~x ~ Ax ~ xS" Such a transformation can be made in principle, by the machinery 
of projection operators [12], or, in general, by application of the familiar asymptotic 
method of multiple scales. The specific implementation of this program in application to 
the investigated system poses a rather complex independent problem. Consequently, looking 
at the physical side of the issue, we assume here that only the quantity ~ in Eqs. (I) fluc- 
tuates, i.e., the indicated adiabatic elimination can be achieved by simply transforming 
from Eqs. (I) to the single nonlinear equation (2). In this case D I = D ~ 0, D 2 = D 3 = D~ = 
0, and the Langevin stochastic equation used in place of (6) has the following form in the 
variables (5): 

dO 6 ~ q - e x p  - - 0  -1 = - -  -- 0 d~ -- 0 ]/2--D dw 
1 + ~o ,  (8)  

and it can be associated (in the sense of Stratonovich) with the Fokker-Planck equation 

Oq~ _ 0 6 ~ - e x p  --____~0 - ~  ( I _ D )  0 q~ q - D  (02q~). ( 9 )  
a t  O0 1 -~ aO O0 z 

We w r i t e  t h e  s o l u t i o n  o f  t h e  s t e a d y - s t a t e  c o u n t e r p a r t  o f  Eq.  ( 9 ) .  I n t e g r a t i n g  i t  o n c e  
u n d e r  t h e  o b v i o u s  c o n d i t i o n  dO/dO ~ 0 a s  0 + ~ ,  we h a v e  

O0 I~ -~exp  --0 / - I  = - -  q). ( 1 0 )  
1 + aO / DO .~ 

The solution (i0) can be written in the form 

~:CO_l_l/Dexp( 8_~__~ ) dF 1 ( - - 0  )-I 
dO 0 2 ~ -[- exp - -  , ( 11 ) ' 1 - I - a 0  

where F(8) is interpreted as an indefinite integral, i.e., the inverse (antiderivative) of 
its derivative, and C is a constant evaluated on the basis of the normalization condition. 
Unfortunately, F(8) cannot be expressed in terms of known functions, but for sufficiently 
small and sufficiently large values of @ we obtain 

1 i 
F(O) N , 0<<I; F ( O ) ~ - - - - ,  0>>I, (12) 

(1 + ~ ) 0  N0 

from which it follows that r vanishes in the limit O ~ 0. It is also readily shown that 
the integral of ~(e) with respect to d8 is finite in the interval (0, =). 

In the general case, F(8) can be written formally as 
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F =  ( 1 + ~ ) o  ' (1+~)~+~ n! \ l + a o  (13) 

Setting aside the problem of the actual form of ~(@) and evaluating the constant (, we 
find the extremum points of this function. We obtain the following equation for them from 
Eq. (i0): 

5'-- 5 - - 0 @ + e x p  ---0 ) - -g(0 ;  ~, ~). 
1 @ D 1 -~.~0 (14 )  

Together with Eq. (14), we also analyze the analogous equation 

5 = O ( ~ + e x p  --0 ) l §  g(O; ~t, cO, (15)  

which determines the dimensionless temperature in the steady s t a t e s  of a heterogeneous exo- 
thermic reaction in the absence of fluctuations. The parameter o is usually small; the solu- 
tions (14) and (15) have been investigated in detail for o = 0 [i0]. If ~ < ~,(~) (~,(0) = 
e-2), the function g(@; ~, o) is nonmonotonic and has the form shown in Fig. I. The behavior 
of the reaction can differ qualitatively in this case, depending on the quantity 6 (Fig. i): 
For ~ > 61, a single stable regime with @ = @0 exists, in which the reaction rate is limited 
by the rate of diffusion influx of the reagent and for 6 < 62 a single regime occurs, which 
is limited by kinetic factors. In the interval 62 < 6 <61, diffusion and kinetic stable re- 
gimes coexist [the regime corresponding to the descending branch of g(@; ~, o) is unstable]. 
The critical values of the parameter ~l and ~2, of course, depend on ~ and o. 

If heat-transfer fluctuations take place (D ~ 0), the stationary density function ~(@) 
of the realization of different values of @ must be analyzed instead of a definite value of 
@ characterizing the steady state within the framework of the deterministic model. It is 
seen at once that the presence of external noise can indeed result in a radical rearrange- 
ment of the physical pattern of the process. Suppose, e.g., that 5 > ~i, so that the diffu- 
sion regime 8 = @0 shown in Fig. I occurs under deterministic conditions. If the quantity 
D characterizing the level of the fluctuations is not too great (~' > 61, i.e., D < 6/61 - i), 
it is still possible to have a single diffusion regime described by a function ~(@) of the 
type represented by curve 1 in Fig. 2; the value of the temperature in the reaction zone 
obeys the inequality @i < 60 in this case (see the straight line 1 in Fig. i). If 6/~ 2 - 
i > D > ~/~l - i, the transition is made to a bistable situation similar to that in [4-7], 
where the function ~(@) has two maxima, which correspond to the diffusion regime and the 
kinetic regime with respective temperatures @= < @~ and 8=' (situation 2 in Figs. 1 an~ 2). 
Finally, if D > 8/@= - i, the maximum of ~(@) corresponding to the diffusion regime vanishes 
altogether, and only the kinetic regime remains with a temperature @~' < @=' (curves 3 in 
Figs. i and 2). Analogously, if two stable regimes are possible under deterministic c~ndi- 
tions (~= < 6 < ~), fluctuations can eliminate the diffusion regime. On the whole, the 
temperature of the reaction zone decreases as D is increased. 

Thus, the presence of external noise leads, first, to quantitative variations of the 
steady-state characteristics with the onset of statistical scatter and, second, to a qaali- 
tative modification of the behavior of the system. The above-described pattern is completely 
consistent with the results of other studies of the influence of noise on nonlinear sTstems 
[8]. However, a conceptually new phenomenon emerges in the above-mentioned possibilitF of 
actual extinction of the reaction, i.e., a transition from the diffusion regime to the kine- 
tic regime when the fluctuations exceed a definite critical level. The occurrence of ~uch a 
transition indicates that the application of the classical deterministic theory of hetero- 
geneous exothermic reactions [i0] to systems subjected to external noise effects can induce 
qualitative as well as quantitative errors. This conclusions is also valid hypothetic~lly 
in the situation where the fluctuations of the heat-transfer coefficient ~ are accompanied 
by fluctuations of a second regime parameter: the mass influx coefficient ~ of the reagent, 
and additive noise sets in together with multiplicative noise as a result of fluctuations of 
the external temperature T o and the unperturbed concentration c 0. The analysis of the~e ef- 
fects requires further investigation along the lines set forth in this article. 

NOTATION 

C, normalization constant; c, concentration; cp, specific heat; Dj, diffusion coefficients 
in the plane of the dimensionless temperature and the dimensionless concentration; E, activa- 
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tion energy; F, function defined in Eqs. (12) and (13); f, probability density function; 
g, function in Eqs. (14) and (15); k, reaction rate; Q, heat of reaction; R, gas constant; 
T, temperature; t, time; wj, Wiener processes; x, dimensionless concentration; z, coeffi- 
cient of the exponential in Eq. (I); ~, heat-transfer coefficient; 6, mass influx coeffi- 
cient of reagent; ~, 6, ~, a, parameters defined in Eq. (5); e, small parameter in Eq. (i); 
e, dimensionless temperature; ~, dimensionless time; 4, probability density function. 

LITERATURE CITED 
i. L. S. Polak and A. S. Mikhailov, Self-Organization in Nonequilibrium Physicochemical 

Systems [in Russian], Moscow (1983). 
2. W. Horsthemke and M. Malek-Mansour, Z. Phys. B, 24, No. 3, 307-313 (1976). 
3. W. Horsthemke and R. Lefever, Phys. Lett. A, 64, No. i, 19-21 (1977). 
4. J. De la Rubia and M. G. Velarde, Phys. Lett. A, 69, No. 4, 304-306 (1978). 
5. L. Arnold, W. Horsthemke, and R. Lefever, Z. Phys. B, 29, No. 4, 367-373 (1978). 
6. K. Kitachara, W. Horsthemke, R. Lefever, and Yu. Inaba, Prog. Theor. Phys., 64, No. 4, 

1233-1247 (1980). 
7. J. Sancho and M. San Miguel, Z. Phys. B, 36, No. 4, 357-364 (1980). 
8. W. Horsthemke and R. Lefever, Noise-Induced Transitions (Springer Series in Synergetics, 

Vol. 15), Springer-Verlag, Berlin-Heidelberg-New York (1983). 
9. A. S. Mikhailov, Dokl. Akad. Nauk SSSR, 243 , No. 4, 786-789 (1978). 

i0. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], 
Moscow (1967). 

ii. H. Haken, Synergetics, 3rd rev. enl. ed., Springer-Verlag, Berlin -New York (1983). 
12. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural 

Sciences, Springer-Verlag, Berlin-New York (1983). 

RADIATION HEAT TRANSFER IN TWO-PHASE MEDIA 

K. S. Adzerikho UDC 535.34:535.36 

The state of the art of approximate and numerical methods of the theory of radia- 
tion heat transfer is analyzed. The principles for producing engineering methods 
of computing the radiation heat-transfer characteristics in power plants are exa- 
mined. 

Investigations of radiation heat transfer in two-phase media play an important part in 
many areas of physics and modern engineering. Their value has recently grown considerably 
in connection with the rapid development of new techniques and intensification of technolo- 
gical processes associated with the significant increase in the power of energy installa- 
tions. This results in a need for a more correct solution of radiation heat-transfer prob- 
lems. The development of methods of the theory of radiation heat transfer should, in our 
opinion, proceed in two directions, the development of well-founded approximate methods and 
effective numerical algorithms. If the first methods are needed to carry out correct esti- 
mates of the radiation heat-transfer phenomena, to study complex thermophysical processes, 
then the second is for the production of effective engineering methods and to give a founda- 
tion for the approximate methods being developed. Taking into account such important physi- 
cal phenomena for radiation heat transfer as multiple scattering, selectivity of absorption, 
thermodynamic nonequilibrium, polydispersity, inhomogeneity and geometry of the emitting 
volume, etc., is still performed insufficiently correctly in the literature. Even more so, 
if we speak of a one-time accounting of these phenomena. The solution of such questions 
would approximate physical models selected to real objects. Moreover, it is necessary to 
give a physically rigorous foundation of the effective quantities used in radiation heat- 
transfer practice (effective temperature of the working volume, effective emissivity of the 
heat carrier, coefficient of thermal efficiency of the screens, etc.). It should be noted 
that the solution of such problems is also of extreme importance for plasma physics, problems 
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